博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
python内置数据结构方法的时间复杂度
阅读量:7294 次
发布时间:2019-06-30

本文共 2320 字,大约阅读时间需要 7 分钟。

转载自:http://www.orangecube.net/python-time-complexity

本文翻译自

本文基于协议,转载请保留此协议。

本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。

本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。

列表(list

以完全随机的列表考虑平均情况。

列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)

操作 平均情况
复制 O(n) O(n)
append[注1] O(1) O(1)
插入 O(n) O(n)
取元素 O(1) O(1)
更改元素 O(1) O(1)
删除元素 O(n) O(n)
遍历 O(n) O(n)
取切片 O(k) O(k)
删除切片 O(n) O(n)
更改切片 O(k+n) O(k+n)
extend[注1] O(k) O(k)
O(n log n) O(n log n)
列表乘法 O(nk) O(nk)
x in s O(n)  
min(s), max(s) O(n)  
计算长度 O(1) O(1)

双向队列(collections.deque

deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。

操作 平均情况 最坏情况
复制 O(n) O(n)
append O(1) O(1)
appendleft O(1) O(1)
pop O(1) O(1)
popleft O(1) O(1)
extend O(k) O(k)
extendleft O(k) O(k)
rotate O(k) O(k)
remove O(n) O(n)

集合(set)

未列出的操作可参考 dict —— 二者的实现非常相似。

操作 平均情况 最坏情况
x in s O(1) O(n)
并集 s|t O(len(s)+len(t))  
交集 s&t O(min(len(s), len(t)) O(len(s) * len(t))
差集 s-t O(len(s))  
s.difference_update(t) O(len(t))  
对称差集 s^t O(len(s)) O(len(s) * len(t))
s.symmetric_difference_update(t) O(len(t)) O(len(t) * len(s))

由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。

集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。

字典(dict)

下列字典的平均情况基于以下假设:

1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。

小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。

操作 平均情况 最坏情况
复制[注2] O(n) O(n)
取元素 O(1) O(n)
更改元素[注1] O(1) O(n)
删除元素 O(1) O(n)
遍历[注2] O(n) O(n)

注:

[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.

[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.

转载于:https://www.cnblogs.com/MY0213/p/8674244.html

你可能感兴趣的文章
tomcat端口被占用
查看>>
web框架
查看>>
2017工作总结
查看>>
ios 容错处理JKDataHelper和AvoidCrash
查看>>
导出toolStrip1中的图标
查看>>
ASP.NET Core -中间件(Middleware)使用
查看>>
占有优先量词
查看>>
SQL Server里Grouping Sets的威力
查看>>
Spring利用JDBCTemplate实现批量插入和返回id
查看>>
C# asp.net mvc 配置多个route 参数
查看>>
订单数字提醒的实现
查看>>
导出excel——入门
查看>>
设计模式(十)享元模式Flyweight(结构型)
查看>>
有图有真相!同是滑屏,荣耀Magic2不只比小米MIX3缝隙小,还更稳定
查看>>
AI+云 华为开启智能时代新纪元
查看>>
就是好骑!骑ofo小黄蜂和舒畅早晨say hi,跟闹心堵车say bye
查看>>
张旭豪:外卖概念的三点进化
查看>>
只用来保存JQuery lightbox图片用的
查看>>
C#学习笔记——MDI窗体(多文档界面)
查看>>
C++命名空间 namespace的作用和使用解析
查看>>